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of/-CH was used to interpret their i3C T] data.12 We hope that 
the results presented in this report will lead to a general re-
evaluation of the choice of rcn in 13C relaxation studies. 
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A Stereocontrolled Approach toward Vitamin D 
Metabolites, A Synthesis of the 
Inhoffen-Lythgoe Diol 

Sir: 

Steroids and their transformation products possessing 
modified side chains such as the molting hormones (e.g., ec-
dysones I) ' and the metabolites of vitamin D3 (e.g., 2)2 have 
spurred much research concerned with the synthesis of systems 
incorporating a functionalized side chain.3'4 The vitamin D3 
problem is further complicated by conversion of the steroid 
nucleus into the seco system. Of the synthetic approaches, only 
Lythgoe's5 and more recently Okamura's6 directly construct 
the conjugated triene system. Thus, a strategy which produces 
a C,D unit incorporating the asymmetric center at C(20) 
(steroidal numbering) and which is suitably functionalized for 
elaboration into these biologically important systems as well 
as various analogues appears to represent a useful synthetic 
goal. We describe a synthesis of such a unit, e.g., 4, which, by 
conversion into the Inhoffen-Lythgoe diol 3, effects a formal 
total synthesis of both vitamin D3 and some of its metabo­
lites.5 

1 
As outlined in Scheme 1, the starting material for the se­

quence is the hydroxy ketal 5, which is readily available in 45% 
overall yield from 3-carboxytricyclo[2.2.1.02'6]heptan-5-one.7 

The sulfone 68 is prepared from the iodide by displacement 
with sodium benzenesulfinate.9 Conversion into its anion in 
a THF-HMPA mixture and then addition of a 10% (w/v) 
solution of ethylene oxide in ether led to the hydroxyethylated 
product 7.8 Desulfonylation with LiZCiHsNH2 was plagued 
by double-bond reduction and with unbuffered Na(Hg)10 by 
formation of undefined byproducts, whereas desulfonylation 
by 6% Na(Hg) buffered with Na2HP04 proceeded quantita­
tively.1 ' The desulfonylated product was directly converted 
into the THP derivative of the bishomologated hydroxy ketone 
8.s Methylation proceeds highly stereoselectively from the less 
hindered endo face to give 98 (>30:1). NMR shows a single 
doublet, 5 1.01 for 9, whereas the exo methyl isomer, obtained 
by partial equilibration of 9, shows this methyl group at 5 1.20. 
At this point, all four critical centers corresponding to C( 13), 
C(14), C(17), and C(20) in steroid numbering have been 
created with the correct relative configuration. 

Baeyer-Villiger oxidation using basic hydrogen peroxide 
gives initially the unrearranged hydroxy acid which upon direct 
subjection to TsOH in benzene is converted into the rearranged 
lactone 10:8 IR 1780, 1655 cm"'; NMR 5 5.43 (d, J = 7 Hz, 
1 H), 4.55 (br S, 1 H), 1.28 (d, J = 7 Hz, 3 H), 1.11 (s, 3 H). 
After reduction to the diol, reaction with 1 equiv of tert-
butyldimethylsilyl chloride allowed selective protection of the 
primary alcohol. Transposition of the chirality of the allyl al­
cohol unit to an allylic inverted carbon unit envisioned the use 
of allylic alkylation via organopalladium chemistryl2J3 or 
[3.3]-sigmatropic rearrangement. Attempts to effect a modi­
fied Claisen rearrangement (Claisen-Johnson14 ortho ester 
or Claisen-Ireland-Arnold15 enolate) failed presumably be­
cause of steric crowding. On the other hand, the much less 
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Scheme I. Preparation of l/3-[(R*)-2-fW-Butyldimethylsiloxy-l-
methylethyl]-4a-acetyl-7a(3-methyl-3aa,4,5,6,7,7a/3-hexahydro-
indana>* 

THPO 

12 

42°/-

OSi-j-

a Reference 4. a: *>(i) TsCl, C5H5N, 0 0C; (ii) NaI, MEK, reflux; (in) 
PhSO2Na, DMF, 137 0C. b: C4H9Li, THF, HMPA, -70 0C and then 
C2H4O, ether, -20 0C. c: (i) 6% Na(Hg), Na2HPO4, CH3OH, 25 0C; 
(ii) HOAc, H2O, 95 0C; (iii) DHP, TsOH, CH2Cl2, RT. d: LDA, THF, 
-78 to 0 0C. e: (i) H2O2, NaOH, CH3OH, H2O, 25 0C; (ii) TsOH, 
PhH, RT. f: (i) LiAlH4, ether, reflux; (ii) TBDMS-Cl, imidazole, 
DMF, RT. g: (i) C2H5OCH=CH2, Hg(OAc)2, RT; (ii) FVP, 500 0C; 
(iii) CH3Li, ether, -70 0C; (iv) PCC, CH2Cl2, NaOAc, RT. h: (i) 
C5H5NHOTs, C2H5OH, RT; (ii) TsCl, C5H5N, 0 0C; (iii) KOC4H9-?, 
ether, 0 0C. (j) 1 atm of H2, PtO2, THF. 

sterically demanding normal Claisen reaction of 11 (R = CH 
= CH?) proceeded cleanly in >85% yield using a flash vacuum 
pyrolysis technique.16 The lability of the aldehyde led us to 
convert it directly into the methyl ketone 128 (R/ = CH3) , 
which was isolated in 60% yield based on 11 (R = H). The 
critical stereochemistry of this sequence stemmed from the cis 
fused lactone 10 and the concerted nature of the Claisen re­
action. Correlation with an authentic sample at a later stage 
confirmed these anticipations. Selective removal of the THP 
utilized acetal exchange.17 The yield of 70% represented a 
minimum since the major byproduct is the diol in which both 
the THP and silyl groups are removed, trans-Hydrindene 

OTs 

(1) 

AcO HO H 

OSi-(-

AcO 

OSi -\-

PhCO, 

14 15 

formation to 138 was accomplished by intramolecular alkyl-
ation of the keto tosylate18 which was subsequently hydroge-
nated to give 4. Since the cyclization is performed under ep-
imerizing conditions, the stereochemistry of the acetyl group 
is assigned as equatorial. The proton at C(4) appears as a td 
(J = 12, 3.8 Hz) at <5 2.71 to support this assignment. 

Compound 4 is ideal for going toward either the ecdysones 
or vitamin D. With a view toward the latter, 4 was subjected 
to a Baeyer-Villiger oxidation (MCPBA, CH2Cl2, RT, 95%). 
The steroid side chain can be easily introduced via an orga-
nocuprate reaction (eq 1) (i, TsOH, CH3OH, RT; ii, TsCl, 
C5H5N O 0 C; iii, CH 2 =C(CH 3 )CH 2 CH 2 MgI , Li2CuCl4, 
ether-TH F, - 7 8 0C to RT)S and the hydroxylated vitamin D 
side chain with correct stereochemistry has been introduced 
from this type of system.519 Introduction of the remaining 
portions of the vitamin incorporating the acetyl carbons is 
envisioned for future work. On the other hand, methanolysis 
(NaOCH3 , CH3OH, RT) gave the alcohol 14« in 95% yield 
with the primary alcohol still protected. Using the method of 
Lythgoe, this intermediate can be converted into various vi­
tamin D's.5 To confirm the structural assignment, 14 was 
converted into diol 3 by hydroxy inversion20 via 15 and then 
removal of both the /err-butyldimethylsilyl and benzoate 
groups (i, Ph3P, C 2 H 5 O 2 CN=NCO^C 2 H 5 , PhCO2H, PhH, 
60-65 0 C; ii, TsOH, CH 3OH, RT; iii, LiAlH4, THF, RT).S 

The racemic diol thus obtained was identical with an authentic 
sample by TLC, 1H and 13C NMR, and IR spectroscopy. 

Thus, 14 represents a differentiated basic building block of 
special use for modified vitamin D's. The ability to form 14 in 
over 8% overall yield from 5 compares quite favorably with the 
alternative approach to the closely related system5 (epimeric 
at the secondary hydroxyl). Starting with optically pure 5, the 
sequence was repeated to give all of the intermediates (see the 
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appendix, which appears in the microfilm edition, for selected 
data), 14 ( [a ] 2 4

D 7.6° (c 1.0, CH2Cl2)), and 3 in optically pure 
form. The latter was compared spectrally as well as by melting 
point (113-114 0 C, lit.5 114 0 C), mixture melting point 
(113-114 0 C), and rotation ( [ a ] 2 4

D 36.2° (c 0.395, CH3OH) 
(authentic, [ a ] 2 4

D 36.5° (c 1.0, CH3OH)) with an authentic 
sample. 
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Bicyclo[2.2.1]heptanes in Organic Synthesis. 
Stereocontrolled Approach to Sterol Side-Chain 
Construction: Synthesis of De-AB-cholest-ll-en-9-one 

Sir: 

The vast majority of sterols, including insect and crustacean 
moulting hormones, and the active metabolites of vitamin D 
possess the R configuration at C(20) (cf. cholesterol (I)). The 

problems associated with generating and controlling chirality 
in acyclic systems have primarily been responsible for the 
limited success recorded to date for elaborating the stereo­
chemistry at C(17) and at C(20) of sterol side chains.1'2 A 
potential solution to this problem is embodied in the bicy-
clo[2.2.1 ]heptane derivative 2 whose conformational rigidity 
allows for elaboration of not only the chirality at C(20), but 
also that encountered at C(13), C(14), and C(17). We detail 
below the conversion of ( - ) -2 into (+)-de-/lB-cholest-l 1-
en-9-one (3), a known precursor to tachysterol3 and precalci­
ferol 3. 

0 
The synthetic plan centered around the key bicyclic lactone 

4 in which the carbonyl unit of the lactone serves to introduce 
the remaining carbon atoms of the side chain (cf. 4 —• 5). The 
oxygen function at C(16) (steroid numbering) provides a 
handle for establishing the stereochemistry at C(14) via a C-O 
—•<• C-C chirality transfer (cf. 5 -* 6). 

Alcohol 7, [ a ] 2 5
D - 115° (c 1.01, CHCl3), obtained in 

near-quantitative yield by dehydrohalogenation (DBU, DMF, 
170-180 0C, 1 h) of (-)-bromo alcohol 2,3 was subjected to 
(a) benzylation (NaH, C6H5CH2Br, Bu4NI, benzene-Me2SO 
(20:1)) and (b) hydrolysis (10% HCl, THF) giving rise (~86% 
overall yield) to the bicyclo[2.2.1]heptenone 8: [ a ] 2 5

D -479° 
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